Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dhh1 promotes autophagy-related protein translation during nitrogen starvation.

Identifieur interne : 000364 ( Main/Exploration ); précédent : 000363; suivant : 000365

Dhh1 promotes autophagy-related protein translation during nitrogen starvation.

Auteurs : Xu Liu [États-Unis] ; Zhiyuan Yao [États-Unis] ; Meiyan Jin [États-Unis] ; Sim Namkoong [États-Unis] ; Zhangyuan Yin [États-Unis] ; Jun Hee Lee [États-Unis] ; Daniel J. Klionsky [États-Unis]

Source :

RBID : pubmed:30973873

Descripteurs français

English descriptors

Abstract

Macroautophagy (hereafter autophagy) is a well-conserved cellular process through which cytoplasmic components are delivered to the vacuole/lysosome for degradation and recycling. Studies have revealed the molecular mechanism of transcriptional regulation of autophagy-related (ATG) genes upon nutrient deprivation. However, little is known about their translational regulation. Here, we found that Dhh1, a DExD/H-box RNA helicase, is required for efficient translation of Atg1 and Atg13, two proteins essential for autophagy induction. Dhh1 directly associates with ATG1 and ATG13 mRNAs under nitrogen-starvation conditions. The structured regions shortly after the start codons of the two ATG mRNAs are necessary for their translational regulation by Dhh1. Both the RNA-binding ability and helicase activity of Dhh1 are indispensable to promote Atg1 translation and autophagy. Moreover, eukaryotic translation initiation factor 4E (EIF4E)-associated protein 1 (Eap1), a target of rapamycin (TOR)-regulated EIF4E binding protein, physically interacts with Dhh1 after nitrogen starvation and facilitates the translation of Atg1 and Atg13. These results suggest a model for how some ATG genes bypass the general translational suppression that occurs during nitrogen starvation to maintain a proper level of autophagy.

DOI: 10.1371/journal.pbio.3000219
PubMed: 30973873
PubMed Central: PMC6459490


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dhh1 promotes autophagy-related protein translation during nitrogen starvation.</title>
<author>
<name sortKey="Liu, Xu" sort="Liu, Xu" uniqKey="Liu X" first="Xu" last="Liu">Xu Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yao, Zhiyuan" sort="Yao, Zhiyuan" uniqKey="Yao Z" first="Zhiyuan" last="Yao">Zhiyuan Yao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jin, Meiyan" sort="Jin, Meiyan" uniqKey="Jin M" first="Meiyan" last="Jin">Meiyan Jin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Namkoong, Sim" sort="Namkoong, Sim" uniqKey="Namkoong S" first="Sim" last="Namkoong">Sim Namkoong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yin, Zhangyuan" sort="Yin, Zhangyuan" uniqKey="Yin Z" first="Zhangyuan" last="Yin">Zhangyuan Yin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jun Hee" sort="Lee, Jun Hee" uniqKey="Lee J" first="Jun Hee" last="Lee">Jun Hee Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klionsky, Daniel J" sort="Klionsky, Daniel J" uniqKey="Klionsky D" first="Daniel J" last="Klionsky">Daniel J. Klionsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30973873</idno>
<idno type="pmid">30973873</idno>
<idno type="doi">10.1371/journal.pbio.3000219</idno>
<idno type="pmc">PMC6459490</idno>
<idno type="wicri:Area/Main/Corpus">000300</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000300</idno>
<idno type="wicri:Area/Main/Curation">000300</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000300</idno>
<idno type="wicri:Area/Main/Exploration">000300</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dhh1 promotes autophagy-related protein translation during nitrogen starvation.</title>
<author>
<name sortKey="Liu, Xu" sort="Liu, Xu" uniqKey="Liu X" first="Xu" last="Liu">Xu Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yao, Zhiyuan" sort="Yao, Zhiyuan" uniqKey="Yao Z" first="Zhiyuan" last="Yao">Zhiyuan Yao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jin, Meiyan" sort="Jin, Meiyan" uniqKey="Jin M" first="Meiyan" last="Jin">Meiyan Jin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Namkoong, Sim" sort="Namkoong, Sim" uniqKey="Namkoong S" first="Sim" last="Namkoong">Sim Namkoong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yin, Zhangyuan" sort="Yin, Zhangyuan" uniqKey="Yin Z" first="Zhangyuan" last="Yin">Zhangyuan Yin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jun Hee" sort="Lee, Jun Hee" uniqKey="Lee J" first="Jun Hee" last="Lee">Jun Hee Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klionsky, Daniel J" sort="Klionsky, Daniel J" uniqKey="Klionsky D" first="Daniel J" last="Klionsky">Daniel J. Klionsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS biology</title>
<idno type="eISSN">1545-7885</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (genetics)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Autophagy (physiology)</term>
<term>Autophagy-Related Proteins (genetics)</term>
<term>Autophagy-Related Proteins (metabolism)</term>
<term>DEAD-box RNA Helicases (genetics)</term>
<term>DEAD-box RNA Helicases (metabolism)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Nitrogen (deficiency)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Proto-Oncogene Proteins (genetics)</term>
<term>Proto-Oncogene Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autophagie (physiologie)</term>
<term>Azote (déficit)</term>
<term>Azote (métabolisme)</term>
<term>Cellules HEK293 (MeSH)</term>
<term>DEAD-box RNA helicases (génétique)</term>
<term>DEAD-box RNA helicases (métabolisme)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines adaptatrices de la transduction du signal (génétique)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines associées à l'autophagie (génétique)</term>
<term>Protéines associées à l'autophagie (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines proto-oncogènes (génétique)</term>
<term>Protéines proto-oncogènes (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Autophagy-Related Proteins</term>
<term>DEAD-box RNA Helicases</term>
<term>Protein Kinases</term>
<term>Proto-Oncogene Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Autophagy-Related Proteins</term>
<term>DEAD-box RNA Helicases</term>
<term>Nitrogen</term>
<term>Protein Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Proto-Oncogene Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Azote</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>DEAD-box RNA helicases</term>
<term>Protein kinases</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines associées à l'autophagie</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines proto-oncogènes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>DEAD-box RNA helicases</term>
<term>Facteurs de transcription</term>
<term>Protein kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines associées à l'autophagie</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines proto-oncogènes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Autophagie</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Autophagy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Phosphorylation</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HEK293</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Phosphorylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Macroautophagy (hereafter autophagy) is a well-conserved cellular process through which cytoplasmic components are delivered to the vacuole/lysosome for degradation and recycling. Studies have revealed the molecular mechanism of transcriptional regulation of autophagy-related (ATG) genes upon nutrient deprivation. However, little is known about their translational regulation. Here, we found that Dhh1, a DExD/H-box RNA helicase, is required for efficient translation of Atg1 and Atg13, two proteins essential for autophagy induction. Dhh1 directly associates with ATG1 and ATG13 mRNAs under nitrogen-starvation conditions. The structured regions shortly after the start codons of the two ATG mRNAs are necessary for their translational regulation by Dhh1. Both the RNA-binding ability and helicase activity of Dhh1 are indispensable to promote Atg1 translation and autophagy. Moreover, eukaryotic translation initiation factor 4E (EIF4E)-associated protein 1 (Eap1), a target of rapamycin (TOR)-regulated EIF4E binding protein, physically interacts with Dhh1 after nitrogen starvation and facilitates the translation of Atg1 and Atg13. These results suggest a model for how some ATG genes bypass the general translational suppression that occurs during nitrogen starvation to maintain a proper level of autophagy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30973873</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1545-7885</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>PLoS biology</Title>
<ISOAbbreviation>PLoS Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Dhh1 promotes autophagy-related protein translation during nitrogen starvation.</ArticleTitle>
<Pagination>
<MedlinePgn>e3000219</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pbio.3000219</ELocationID>
<Abstract>
<AbstractText>Macroautophagy (hereafter autophagy) is a well-conserved cellular process through which cytoplasmic components are delivered to the vacuole/lysosome for degradation and recycling. Studies have revealed the molecular mechanism of transcriptional regulation of autophagy-related (ATG) genes upon nutrient deprivation. However, little is known about their translational regulation. Here, we found that Dhh1, a DExD/H-box RNA helicase, is required for efficient translation of Atg1 and Atg13, two proteins essential for autophagy induction. Dhh1 directly associates with ATG1 and ATG13 mRNAs under nitrogen-starvation conditions. The structured regions shortly after the start codons of the two ATG mRNAs are necessary for their translational regulation by Dhh1. Both the RNA-binding ability and helicase activity of Dhh1 are indispensable to promote Atg1 translation and autophagy. Moreover, eukaryotic translation initiation factor 4E (EIF4E)-associated protein 1 (Eap1), a target of rapamycin (TOR)-regulated EIF4E binding protein, physically interacts with Dhh1 after nitrogen starvation and facilitates the translation of Atg1 and Atg13. These results suggest a model for how some ATG genes bypass the general translational suppression that occurs during nitrogen starvation to maintain a proper level of autophagy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Xu</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Zhiyuan</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0002-5759-9822</Identifier>
<AffiliationInfo>
<Affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Meiyan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Namkoong</LastName>
<ForeName>Sim</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Zhangyuan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Jun Hee</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Klionsky</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
<Identifier Source="ORCID">0000-0002-7828-8118</Identifier>
<AffiliationInfo>
<Affiliation>Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 DK020572</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK114131</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM053396</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Biol</MedlineTA>
<NlmUniqueID>101183755</NlmUniqueID>
<ISSNLinking>1544-9173</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C413216">ATG13 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071183">Autophagy-Related Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C555412">Eap1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011518">Proto-Oncogene Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C477823">ATG1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C094683">DDX6 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C445083">DHH1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="D053487">DEAD-box RNA Helicases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071183" MajorTopicYN="N">Autophagy-Related Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053487" MajorTopicYN="N">DEAD-box RNA Helicases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="Y">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011518" MajorTopicYN="N">Proto-Oncogene Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30973873</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pbio.3000219</ArticleId>
<ArticleId IdType="pii">PBIOLOGY-D-18-00330</ArticleId>
<ArticleId IdType="pmc">PMC6459490</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2009 Jun 18;5(6):527-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19527881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Sep 25;325(5948):1682-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 May 13;94(10):5201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27454-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2015 Jun;25(6):354-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25759175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 3;433(7025):477-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15690031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Jul;7(7):1389-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18407956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2003 Oct;5(4):539-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14536056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2018 Jun;19(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29712776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Med. 2012 Apr;2(4):a009357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 Apr;11(4):385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Feb;14(2):477-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Oct 1;60(1):118-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26412305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1205:45-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25213239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 02;485(7396):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22552098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Aug 22;194(4):527-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21844211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Innate Immun. 2013;5(5):427-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23774579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Aug;19(8):3290-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Jul;11(7):2643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1378397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2018;14(5):898-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29465287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W329-W337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29860432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2010 Apr;22(2):124-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20034776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11206-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2019 Jan 17;73(2):314-324.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30527663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 1;21(19):3475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2013 Sep;30(9):341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23836714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):731-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016;12(1):1-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Oct 03;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27692063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 Jan;27(1):95-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27821408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2011 Oct 12;11:92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21992524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2015 Nov 2;11(11):2114-2122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26649943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Aug 15;19(16):1844-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jul;41(Web Server issue):W480-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23748952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Jul;10(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23749301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 May 14;11(5):e1005233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25973932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Nov 9;28(3):501-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2008;451:1-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19185709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 20;469(7330):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Oct;9(10):1102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Mar 2;25(5):546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25660547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2005 Aug;11(8):1258-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 17;332(6036):1429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21617040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Oct;32(20):4181-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22890846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2015 Jul;17(7):930-942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26098573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Feb 15;367:17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Jun 16;24(12):1314-1322</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24881874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2009 Jun;2009(6):pdb.prot5234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147192</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Liu, Xu" sort="Liu, Xu" uniqKey="Liu X" first="Xu" last="Liu">Xu Liu</name>
</region>
<name sortKey="Jin, Meiyan" sort="Jin, Meiyan" uniqKey="Jin M" first="Meiyan" last="Jin">Meiyan Jin</name>
<name sortKey="Klionsky, Daniel J" sort="Klionsky, Daniel J" uniqKey="Klionsky D" first="Daniel J" last="Klionsky">Daniel J. Klionsky</name>
<name sortKey="Lee, Jun Hee" sort="Lee, Jun Hee" uniqKey="Lee J" first="Jun Hee" last="Lee">Jun Hee Lee</name>
<name sortKey="Namkoong, Sim" sort="Namkoong, Sim" uniqKey="Namkoong S" first="Sim" last="Namkoong">Sim Namkoong</name>
<name sortKey="Yao, Zhiyuan" sort="Yao, Zhiyuan" uniqKey="Yao Z" first="Zhiyuan" last="Yao">Zhiyuan Yao</name>
<name sortKey="Yin, Zhangyuan" sort="Yin, Zhangyuan" uniqKey="Yin Z" first="Zhangyuan" last="Yin">Zhangyuan Yin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000364 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000364 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30973873
   |texte=   Dhh1 promotes autophagy-related protein translation during nitrogen starvation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30973873" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020